基于大数据智能订货研究

新商盟网 2022-12-30 10:12 185

摘要:这篇文章主要介绍了基于大数据智能订货研究,需要的朋友可以参考下,如果你喜欢还可以浏览基于大数据智能订货研究的最新相关推荐信息。

  摘要:在互联网时代,如果把数据作为一种经济资源,零售户作为资源生产者之一,所产生的大数据中就包含了很多的个人隐私,并且这些由零售户产生的数据也是企业最为关注的数据、具有商业价值的数据。

  以新商盟数据为例,零售户浏览品牌、搜索关键词、位置信息等行为数据都会被记录下来,所涉及的个人信息和销售信息也将蕴含其中。如何运用这些数据为零售户提供更优质、更便捷、更高效的服务呢?更科学一键订货或智能订货,只有知己知彼才能作战市场,标签数据的构建是关键:

  一、标签构建

  (一)构建商品标签(知己)

  建立卷烟品牌属性标签,运用赋值,既按照一定规则,给每个属性的进行评估,在市场销售环境给予一定的指标,指标评估给予一定的分值,按分值进行品牌在市场的状态描述,可能按满足、基本满足、市场空缺等状态。赋值的方法也是多种形式,最后可进行品牌划分。

  (二)构建用户标签(知彼)

  数据的价值在于分析,利用大数据技术,可以对零售户的行为,即销售环境、个人经营能力、行为模式进行深入研究。

  一是互联网技术捕捉和定位用户,追踪零售户在新商盟浏览的行为轨迹,将零散片段拼合出该零售户的特征,再根据零售户的行为,判断该零售户的需求、经营能力和区域环境。二是建立企业与零售户心型互动关系,打破以往的“自下而下”的提报需求,建立与零售“一对多”的线性关系。(新商盟网xinshangmeng.org)

  (三)制定营销策略(作战)

  大数据根据零售户的“行为轨迹”,分析其销售环境,能够进一步判断其关联需求,挖掘其潜在需求,审批人对零售户需求进行预测;再通过具有针对性的关联推荐,促成有效订单生成。

  二、智能订单

  智能订单的数据应该从“人工”到“积累数据(历史数据)”,从“数据”到建立“模型”,从“模型”到“自动生成”,经营积累数据,数据运行模型,运营越来越精准高效,历史数据盘判断哪个品类销售最好,预测未来销量,给出最优卷烟商品选择,审批人确认决策,让卷烟订购基于数据自动化运营发挥运营新性。

  品类规划:卷烟品牌的组成是否合理能直接影响订单成功率,通过大数据的积累,使用算法模型结合特定累目标卷烟要求,保证卷烟品类丰富,生成品类规划。

  规划逻辑步骤:

  品类规划=XX(新商盟网xinshangmeng.org)

  数据(A)=历史数据A1、零售户行为数据A2、其他数据A3

  品类生命周期(P)=成熟品牌P、成长P+、新品P-

  品牌结构(J)=常规品类、季节品类、潜力品类、其他品类

  x^x→A^N→P^N→J^N→均衡到每一天

  区域聚类:根据零售户销售商品进行划分外,还可以按照区域划分的方式。

  三、订单生成

  各通道数据的清洗可通过打分的方式来评定,我们使用加权平均算法来完成最后生成。一是零售户某一时间段内所有订烟的次数;二是零售户对各个品牌的订购次数,转换为1-5的评分;三是各个品牌特征的订购次数;四是季节性品牌订购次数。(新商盟网xinshangmeng.org)

  设X1、X2、X3、X4、X5代表五个关键属性值,相应的权值为W1、W2、W3、W4、W5,那么根据如下公式:

  X=(w_1 x_1 w_2 x_2 〖+?w〗_n x_n)/(W_1+w_2+?w_n )

  四、设备终端

  数据并不是凭空得到的。在技术层面,采集数据需要有相应的传感器或数据采集设备。这些设备有的是独立存在的,有的直接依附于企业所提供的服务,还有的是公共设施、公共平台。所以如何有效而准确地获得这些数据,其中一个层面的意思就是如何有效地管理这些设备,使它能够及时、全面、有效地将相应数据反馈给企业。终端建设作为基础的建设,有效的把销售数据、市场动态、管理数据到数据的融合性和协同性。作为服务者的企业在很大程度上是以信息、数据和传播的管理作为公司管理的核心。

基于大数据智能订货研究


相关推荐

评论列表
关闭

用微信“扫一扫”